201706\_1

For National Greenland Museum and Archives exclusive use. Please, do not circulate

# Report of the expedition to 10 Norse archaeological sites on the western settlement between the 10<sup>th</sup> and the 29<sup>th</sup> of July of 2017

Expedition leader: David Moreno Mateos Basque Centre for Climate Change – BC3, Spain

# Description of the expedition

#### Itinerary

Between the 13<sup>th</sup> and 28<sup>th</sup> of July we visited 10 Norse farms in the area of Kapisillit (Table 1, Fig. 1). At each site and following the instruction of all the required permits, we found what we thought could be ancient hayfields (Fig. 2) and nearby reference undisturbed sites. Both at hayfield and undisturbed sites we collected samples of plant roots and insects at four plots per location (Fig. 3 and 4). At each plot, we recorded all plant species and took a vertical picture.



**Figure 1. Expedition itinerary.** Yellow dots are sampled locations, yellow dashed lines indicate hiking routes and blue dashed lines indicate boat rides.

Each soil profile was refilled with the same material extracted and in the same order of extraction. In most cases, a compact piece of soil and roots allowed the perfect preservation of the soil reducing the impact to the minimum (Fig. 3).

At each hayfield and beyond the 20-m distance from the ruins, we dug a 30x30 cm<sup>2</sup> soil profile (Fig. 3, Annex 1) and collected one soil sample at 10 cm deep for nitrogen and phosphorus analysis. At each profile, we also aimed to find a fringe of darker soil that could potentially correspond to the period of use of the hayfield created as a consequence of the frequent burnings that Norse used to do according to previous studies (Fig. 5). If the fringe was apparent, we collected soil from the bottom and top of the fringe and additional charcoal samples also at the top and bottom if they were available. Soil and charcoal samples were stored in plastic bags. We dug another profile at reference sites located nearby (<50 m) and outside the hayfield. Reference sites were free of dark layers in the first 30 cm.

#### Table 1. Chronology of the expedition.

| Farm | Dates                                |
|------|--------------------------------------|
| V51  | 13 <sup>th</sup> to 16 <sup>th</sup> |
| V36  | 16 <sup>th</sup> to 17 <sup>th</sup> |
| V35  | 17 <sup>th</sup>                     |
| V32  | 18 <sup>th</sup> to 19 <sup>th</sup> |
| V28b | 19 <sup>th</sup>                     |
| V20  | 21 <sup>st</sup> to 22 <sup>nd</sup> |
| V19a | 22 <sup>nd</sup> to 23 <sup>rd</sup> |
| V19  | 23 <sup>rd</sup>                     |
| V18  | 25 <sup>th</sup> to 26 <sup>th</sup> |
| V07  | 26 <sup>th</sup> to 27 <sup>th</sup> |



Figure 2. Limit of hayfield in farm V18. Former hayfield to the left of the red dashed line covered with grassland vegetation and woody vegetation and moss to the right

### Теат

Other than the expedition leader: Asuncion Rodríguez (BC3), Pierre Blevin (CNRS, France), and Sergio Couto (Volunteer, Spain)



**Figure 3. Sampling plots** at the reference undisturbed site in V51 (left) and digging the soil profile in a former hayfield at V35 (right).

# Sample analysis

Plot vertical pictures were digitized using QGIS and their relative cover per species estimated. We used dissimilarity analysis (Horn-Morisita distance) to detect differences between plant community composition at hayfields and undisturbed sites. Plant root samples were submitted to a metagenomics facility to characterize the community of mycorrhizal fungi. Soil samples were analyzed using liquid chromatography and mass spectrometry to quantify the concentration of total nitrogen and phosphorus. Soil samples at the top and bottom were analyzed using accelerator mass spectrometry to detect the concentration of <sup>14</sup>C and estimate the age of the charcoal pieces or of the organic carbon.



Figure 4. Plant sampling plots at V51. The left plot was on the disturbed area (hayfield) and the right plot on the reference area.



**Figure 5. Soil profile.** Two charcoal layers can be visually detected at the bottom of the profile at V32. Measuring tape in centimeters.

#### **Results from the preliminary analysis**

The results from the <sup>14</sup>C dating are based on the humin fraction extracted from the soil samples (Table 2, Annex 2). Overall, results match the known occupation period in the Western settlement except for one sample at V32 that is much more modern. We found that V35 and V36 show too early starting dates and V7 and V51 show slightly late abandonment periods. However, the small excess of the former is captured by the  $1\sigma$  error, indicating that these farm may have resisted till the end of the occupation period. It is confusing the fact that in the two sites where we dated humin and charcoal samples at the same depth the results from both carbon sources differ by c. 400 years. This result questions the validity of dating the humin fraction of the soil. For unknown reasons, only at these two sites there was almost no difference between the dates at the two depths sampled.

The plant community composition was different between the hayfields and reference sites (Fig. 6). Although the amount of species was almost identical (35 and 34 respectively at hayfields and reference sites), the species and their

abundances were significantly different. In particular, it seems that disturbed sites are dominated by annual grasses and forbs and reference sites by woody species (Fig. 4). Nitrogen and phosphorus contents in soil were significantly higher (Mann-Whitney test; *p*<0.01) in farmed sites [median (75% confidence interval); 0.85% N (0.55-1.13) and 46 ppm P (37-146)] than in reference sites [0.18%N (0.132-0.59) and 20 ppm P (12-23)]. The mycorrhizal study has not provided relevant results yet.

This suggests that the legacy of ancient agricultural practices (manuring and irrigation) still persists after 600 to 1,000 years of abandonment. This effect can be partially explained by the higher concentration of N (five times higher) and P (two times higher) in the soil of hayfields.

**Table 2. Results from the <sup>14</sup>C sol dating.** Sample ID coding refers to farm code, first three digits (e.g. V20), and sampling depth in centimeters. pMC – percent modern carbon, RCYBP – radio carbon years before present. Standard results were calibrated using OxCal v4.2.4 using the IntCal13 atmospheric curve. Red text highlights results not matching known occupation periods. Dark yellow text indicates periods slightly outside the known occupation periods but whose error is within known occupation periods. The raw results including the calibration tables are included in Annex 2.

| Sample Id | Depth (cm) | Sample<br>type | рМС    | 1σ   | RCYBP  | 1σ | AD year | Time since<br>abandonment | Occupation<br>period |
|-----------|------------|----------------|--------|------|--------|----|---------|---------------------------|----------------------|
| V20       | 8          | charcoal       | 91.91  | 0.27 | 678    | 24 | 1338    | 678                       | 411                  |
| V20       | 8          | humin          | 87.71  | 0.44 | 1053   | 40 | 963     |                           |                      |
| V20       | 18         | humin          | 87.32  | 0.4  | 1089   | 37 | 927     | 1089                      |                      |
| V19a      | 14         | charcoal       | 91.43  | 0.26 | 720    | 23 | 1296    | 720                       | 419                  |
| V19a      | 14         | humin          | 86.67  | 0.42 | 1149   | 39 | 867     |                           |                      |
| V19a      | 30         | humin          | 86.78  | 0.54 | 1139   | 50 | 877     |                           |                      |
| V18       | 4          | humin          | 107.28 | 0.41 | Modern |    |         |                           |                      |
| V28b      | 9          | humin          | 88.18  | 0.46 | 1010   | 42 | 1006    | 1010                      |                      |
| V35       | 7          | humin          | 92.27  | 0.5  | 646    | 44 | 1370    | 646                       | 466                  |
| V35       | 11         | humin          | 87.07  | 0.68 | 1112   | 63 | 904     |                           |                      |
| V36       | 13         | humin          | 91.97  | 0.33 | 672    | 29 | 1344    | 672                       | 495                  |
| V36       | 29         | humin          | 86.48  | 0.48 | 1167   | 45 | 849     |                           |                      |
| V51       | 7          | humin          | 93.26  | 0.31 | 561    | 27 | 1455    | 561                       | 327                  |
| V51       | 16         | humin          | 89.53  | 0.44 | 888    | 39 | 1128    |                           |                      |
| V7        | 4          | humin          | 93.38  | 0.26 | 550    | 22 | 1466    | 550                       | 410                  |
| V7-       | 20         | humin          | 88.74  | 0.31 | 960    | 28 | 1056    |                           |                      |
| V32       | 13         | humin          | 91.62  | 0.32 | 703    | 28 | 1313    | 703                       | 838                  |
| V32       | 21         | humin          | 82.54  | 0.24 | 1541   | 23 | 475     |                           |                      |



**Figure 6. Plant community dissimilarity between reference and disturbed plots.** Each dot represents a plot. Non-metric multidimensional scaling (NMDS) based on Horn-Morisita distance. Stress=0.17. Ellipses indicate standard deviation of the average located in the centroid. Dispersion grouped based on the categories "Reference" and "Disturbed" (ANOVA F=13.5, *p*<0.001).

Annex1. Sampling points per location

| Location  | Latitude | Longitude | Elevation (m) |
|-----------|----------|-----------|---------------|
| V07-dis   | 64.82222 | -50.147   | 48.3          |
| V07-ref   | 64.82204 | -50.1529  | 59.8          |
| V18-dis   | 64.64039 | -50.4874  | 0.0           |
| V18-ref   | 64.63829 | -50.4913  | 2.9           |
| V19a-dis  | 64.53994 | -50.4532  | 4.8           |
| V19a-ref  | 64.54007 | -50.4535  | 2.4           |
| V19-ref   | 64.53652 | -50.4764  | 0.0           |
| V20-dis   | 64.54757 | -50.2911  | 53.6          |
| V20-ref   | 64.54825 | -50.2934  | 63.5          |
| V28b-dis1 | 64.41439 | -50.2581  | 37.3          |
| V28b-dis2 | 64.41398 | -50.2582  | 38.3          |
| V28b-ref  | 64.41133 | -50.2379  | 54.2          |
| V32-dis   | 64.36026 | -50.1627  | 160.1         |
| V32-dis   | 64.36025 | -50.1625  | 164.0         |
| V32-ref   | 64.35956 | -50.1622  | 162.4         |
| V35-ref   | 64.2875  | -50.115   | 232.1         |
| V36-dis   | 64.28652 | -50.1529  | 227.9         |
| V36-dis   | 64.28673 | -50.1519  | 235.5         |
| V36-ref   | 64.28745 | -50.1531  | 245.1         |
| V51-ref   | 64.24309 | -50.1799  | 0             |

The table includes all the profiles excavated, but not all of them were finally used in the study. There are two locations V35-dis and V51-dis that were lost or never recorded. Latitude and longitude are expressed in radians. Elevation is approximate with an error of about 25 m. GPS resolution is approximately 15 m. dis – disturbed, ref – reference.

# Annex 2. Radiocarbon dating results

Radiocarbon dating data are property of the author of this report and cannot be used without his explicit permission.



Report: BC3-03

13 October 2016

Customer: 1611 David Moreno Mateos Basque Centre for Climate Change Edificio Sede 1, 1st Floor, Parque Científico de la UPV, 48940 Leioa Spain

Samples submitted for radiocarbon dating have been processed and measured by AMS. The following results were obtained:

|                | Submitter ID  | Sample type | Fraction of | of modern       | Radiocarbon age |          |
|----------------|---------------|-------------|-------------|-----------------|-----------------|----------|
| DirectAMS Code | Subilitter ID | Sample type | рМС         | $1\sigma$ error | BP              | 1σ error |
| D-AMS 018778   | V32DIS-20     | charcoal    |             |                 |                 |          |
| D-AMS 018779   | V51REF-17     | humin       | 95.74       | 0.29            | 350             | 24       |
| D-AMS 018780   | V51DIS-16     | humin       | 89.53       | 0.44            | 888             | 39       |
| D-AMS 018781   | V51DIS-7      | humin       | 93.26       | 0.31            | 561             | 27       |
| D-AMS 018782   | V7REF-8       | humin       | 94.95       | 0.24            | 416             | 20       |
| D-AMS 018783   | V7DIS-4       | humin       | 93.38       | 0.26            | 550             | 22       |
| D-AMS 018784   | V7DIS-20      | humin       | 88.74       | 0.31            | 960             | 28       |
| D-AMS 018785   | V32REF-9      | humin       | 90.22       | 0.33            | 827             | 29       |
| D-AMS 018786   | V32DIS-13     | humin       | 91.62       | 0.32            | 703             | 28       |
| D-AMS 018787   | V32DIS-21     | humin       | 82.54       | 0.24            | 1541            | 23       |

Results are presented in units of percent modern carbon (pMC) and the uncalibrated radiocarbon age before present (BP). All results have been corrected for isotopic fractionation with an unreported  $\delta^{13}$ C value measured on the prepared carbon by the accelerator. The pMC reported requires no further correction for fractionation.

Standard results were calibrated using OxCal v4.2.4 (Bronk Ramsey 2013) using the IntCal13 atmospheric curve (Reimer et al 2013). Modern results were calibrated from the fraction modern (pMC) and associated error using the same program but calibrated along the Bomb13 atmospheric curve for the Northern Hemisphere, zone 1 (Hua et al 2013).

| D-AMS ID     | RCYBP or <i>pMC</i> | Error | 1 sigma 68.2%, cal yr                                                      | 2 sigma 95.4%, cal yr                            |
|--------------|---------------------|-------|----------------------------------------------------------------------------|--------------------------------------------------|
| D-AMS 018778 |                     |       |                                                                            |                                                  |
| D-AMS 018779 | 350                 | 24    | (29.7%) AD 1483 - 1522<br>(38.5%) AD 1574 - 1628                           | (41.8%) AD 1458 - 1530<br>(53.6%) AD 1540 - 1635 |
| D-AMS 018780 | 888                 | 39    | (22.2%) AD 1049 - 1084<br>( 6.5%) AD 1124 - 1136<br>(39.5%) AD 1150 - 1210 | AD 1035 - 1220                                   |
| D-AMS 018781 | 561                 | 27    | (33.6%) AD 1323 - 1346<br>(34.6%) AD 1392 - 1414                           | (50.1%) AD 1310 – 1360<br>(45.3%) AD 1386 - 1425 |
| D-AMS 018782 | 416                 | 20    | AD 1442 - 1467                                                             | (93.7%) AD 1436 - 1490<br>( 1.7%) AD 1603 - 1608 |
| D-AMS 018783 | 550                 | 22    | (19.5%) AD 1328 - 1341<br>(48.7%) AD 1396 - 1418                           | (34.5%) AD 1318 - 1352<br>(60.9%) AD 1390 - 1428 |
| D-AMS 018784 | 960                 | 28    | (23.4%) AD 1024 - 1048<br>(34.5%) AD 1086 - 1124<br>(10.4%) AD 1137 - 1150 | AD 1020 - 1154                                   |
| D-AMS 018785 | 827                 | 29    | AD 1190 - 1254                                                             | AD 1164 - 1262                                   |
| D-AMS 018786 | 703                 | 28    | AD 1270 - 1296                                                             | (82.0%) AD 1260 - 1306<br>(13.4%) AD 1362 - 1385 |
| D-AMS 018787 | 1541                | 23    | (43.7%) AD 432 - 489<br>(24.5%) AD 532 - 560                               | AD 427 - 574                                     |

| Table 2  | Direct AMS | Doculto  | DCVDD   | and | Calibratad | Vr PC/AD |
|----------|------------|----------|---------|-----|------------|----------|
| Table 2. | DIRECTANDS | Results, | KC I DF | anu | Cambrateu  | II DC/AD |

#### References

Bronk Ramsey, C., Scott, M., & van der Plicht, H. (2013). Calibration for Archaeological and Environmental Terrestrial Samples in the Time Range 26-50 ka cal BP. *Radiocarbon*, 55(4), 2021-2027.

Bronk Ramsey, C., & Lee, S. (2013). Recent and Planned Developments of the Program OxCal. *Radiocarbon*, 55(2-3), 720-730.

Hua, Q., Barbetti, M., & Rakowski, A. J. (2013). Atmospheric Radiocarbon for the Period 1950-2010. *Radiocarbon*, 55(4).

Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatt, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., & van der Plicht, J. (2013). IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP. *Radiocarbon*, 55(4).



#### Report: 1611-019286-019297

2 December 2016

Customer: 1611 David Moreno Mateos Basque Centre for Climate Change Edificio Sede 1, 1st Floor Parque Científico de la UPV Barrio Sarriena Leioa 48940 Spain

Samples submitted for radiocarbon dating have been processed and measured by AMS. The following results were obtained:

|              | Submitter ID      | Sample type | Fraction of | of modern | Radiocarbon age |      |
|--------------|-------------------|-------------|-------------|-----------|-----------------|------|
|              |                   | рМС         | 1 error     | BP        | 1 error         |      |
| D-AMS 019286 | V20DIS-8 (char)   | charcoal    | 91.91       | 0.27      | 678             | 24   |
| D-AMS 019287 | V19ADIS-14 (char) | charcoal    | 91.43       | 0.26      | 720             | 23   |
| D-AMS 019288 | V20DIS-8 (sed)    | humin       | 87.71       | 0.44      | 1053            | 40   |
| D-AMS 019289 | V20DIS-18         | humin       | 87.32       | 0.4       | 1089            | 37   |
| D-AMS 019290 | V19ADIS-14 (sed)  | humin       | 86.67       | 0.42      | 1149            | 39   |
| D-AMS 019291 | V19ADIS-30        | humin       | 86.78       | 0.54      | 1139            | 50   |
| D-AMS 019292 | V18DIS-4          | humin       | 107.28      | 0.41      | Moc             | lern |
| D-AMS 019293 | V28BDIS-9         | humin       | 88.18       | 0.46      | 1010            | 42   |
| D-AMS 019294 | V35DIS-7          | humin       | 92.27       | 0.5       | 646             | 44   |
| D-AMS 019295 | V35DIS-11         | humin       | 87.07       | 0.68      | 1112            | 63   |
| D-AMS 019296 | V36DIS-13         | humin       | 91.97       | 0.33      | 672             | 29   |
| D-AMS 019297 | V36DIS-29         | humin       | 86.48       | 0.48      | 1167            | 45   |

Results are presented in units of percent modern carbon (pMC) and the uncalibrated radiocarbon age before present (BP). All results have been corrected for isotopic fractionation with an unreported  $\delta^{13}$ C value measured on the prepared carbon by the accelerator. The pMC reported requires no further correction for fractionation.

Standard results were calibrated using OxCal v4.2.4 (Bronk Ramsey 2013) using the IntCal13 atmospheric curve (Reimer et al 2013). Modern results were calibrated from the fraction modern (pMC) and associated error using the same program but calibrated along the Bomb13 atmospheric curve for the Northern Hemisphere, zone 1 (Hua et al 2013).

| D-AMS ID     | RCYBP or <i>pMC</i> | Error | 1 sigma 68.2%, cal yr                                                                        | 2 sigma 95.4%, cal yr                                                                   |
|--------------|---------------------|-------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| D-AMS 019286 | 678                 | 24    | (48.3%) AD 1280 - 1300<br>(19.9%) AD 1369 - 1380                                             | (62.0%) AD 1274 – 1310<br>(33.4%) AD 1360 - 1388                                        |
| D-AMS 019287 | 720                 | 23    | AD 1270 - 1286                                                                               | AD 1260 - 1296                                                                          |
| D-AMS 019288 | 1053                | 40    | ( 6.4%) AD 906 - 916<br>(61.8%) AD 968 - 1022                                                | AD 892 - 1033                                                                           |
| D-AMS 019289 | 1089                | 37    | (24.7%) AD 897 - 926<br>(43.5%) AD 943 - 992                                                 | AD 885 - 1020                                                                           |
| D-AMS 019290 | 1149                | 39    | ( 6.4%) AD 778 - 790<br>( 5.8%) AD 826 - 840<br>(24.6%) AD 864 - 907<br>(31.4%) AD 914 - 968 | AD 774 - 976                                                                            |
| D-AMS 019291 | 1139                | 50    | ( 5.0%) AD 778 - 790<br>( 3.9%) AD 828 - 838<br>(59.3%) AD 865 - 978                         | (94.7%) AD 770 – 998<br>( 0.7%) AD 1005 - 1012                                          |
| D-AMS 019292 | 107.28              | 0.41  | AD 2004.18 - 2006.48                                                                         | ( 8.7%) AD 1957.9 - 1958.7<br>(85.6%) AD 2003.2 - 2007.1<br>( 1.1%) AD 2007.64 - 2007.9 |
| D-AMS 019293 | 1010                | 42    | (58.9%) AD 982 - 1044<br>( 9.3%) AD 1100 - 1119                                              | ( 2.2%) AD 902 - 919<br>(93.2%) AD 965 - 1154                                           |
| D-AMS 019294 | 646                 | 44    | (30.4%) AD 1286 - 1318<br>(37.8%) AD 1352 - 1390                                             | AD 1278 - 1400                                                                          |
| D-AMS 019295 | 1112                | 63    | ( 2.2%) AD 780 - 787<br>(66.0%) AD 876 - 1014                                                | AD 770 - 1026                                                                           |
| D-AMS 019296 | 672                 | 29    | (40.1%) AD 1280 - 1304<br>(28.1%) AD 1364 - 1384                                             | (54.7%) AD 1273 - 1318<br>(40.7%) AD 1352 - 1390                                        |
| D-AMS 019297 | 1167                | 45    | (61.6%) AD 776 - 896<br>( 6.6%) AD 928 - 941                                                 | ( 2.2%) AD 724 - 739<br>(93.2%) AD 767 - 981                                            |

| Table 2.  | DirectAMS | Results.   | RCYBP    | and Calibrated | 1 Yr BC/AD |
|-----------|-----------|------------|----------|----------------|------------|
| 1 uoie 2. | Direction | itebuites, | ICC I DI | und Cuntorates |            |

# References

Bronk Ramsey, C., Scott, M., & van der Plicht, H. (2013). Calibration for Archaeological and Environmental Terrestrial Samples in the Time Range 26-50 ka cal BP. *Radiocarbon*, 55(4), 2021-2027.

Bronk Ramsey, C., & Lee, S. (2013). Recent and Planned Developments of the Program OxCal. *Radiocarbon*, 55(2-3), 720-730.

Hua, Q., Barbetti, M., & Rakowski, A. J. (2013). Atmospheric Radiocarbon for the Period 1950-2010. *Radiocarbon*, 55(4).

Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hajdas, I., Hatt, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W., Richards, D. A.,

> 11822 North Creek Parkway N, Suite #107, Bothell, WA 98011 Tel (425) 481-8122 – www.DirectAMS.com

Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M., & van der Plicht, J. (2013). IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-50,000 Years cal BP. *Radiocarbon*, 55(4).